Retinoic acid selectively inhibits lipopolysaccharide induction of tissue factor gene expression in human monocytes.
نویسندگان
چکیده
Expression of tissue factor (TF) by activated monocytes in several diseases leads to disseminated intravascular coagulation. Lipopolysaccharide (LPS)-induced monocyte TF expression is downregulated by the nuclear hormone all-trans retinoic acid (ATRA). In this study, we examined the mechanism by which ATRA inhibits monocyte TF expression. We show that ATRA selectively inhibited LPS induction of TF expression in human monocytes and monocytic THP-1 cells without affecting LPS induction of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8). Inhibition of TF expression occurred at the level of transcription as determined by nuclear run-on. ATRA did not significantly alter the binding or functional activity of the transcription factors c-Fos/c-Jun and c-Rel/p65, which are required for LPS induction of the TF promoter in monocytic cells. In contrast to the ATRA inhibition of the endogenous TF gene, LPS induction of the cloned TF promoter was not inhibited by ATRA in transiently transfected THP-1 cells. Our results demonstrate that ATRA selectively inhibited LPS-induced TF gene transcription in human monocytic cells by a mechanism that does not involve repression of AP-1- or NF-kappaB-mediated transcription.
منابع مشابه
Factor Gene Expression in Human Monocytes Retinoic Acid Selectively Inhibits Lipopolysaccharide Induction of Tissue
http://bloodjournal.hematologylibrary.org/content/91/8/2857.full.html Updated information and services can be found at: (2497 articles) Hemostasis, Thrombosis, and Vascular Biology Articles on similar topics can be found in the following Blood collections http://bloodjournal.hematologylibrary.org/site/misc/rights.xhtml#repub_requests Information about reproducing this article in parts or in ...
متن کاملRetinoic acid reduces induction of monocyte tissue factor and tissue factor/factor VIIa-dependent arterial thrombus formation.
Agents that downregulate the induction of monocyte/macrophage tissue factor (TF) activity may attenuate the thrombotic risk associated with mechanical restoration of vessel patency or artificial arterial grafting. In such events, procoagulant macrophages in the atherosclerotic plaque and procoagulant monocytes adherent to artificial materials may be exposed to the blood stream. Ishii et al (Blo...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملRetinoic acid inhibits interleukin-1-induced cytokine synthesis in human monocytes.
Retinoids are pluripotent morphogens whose effects on gene expression are mediated through specific intracellular receptors. They have certain anti-inflammatory effects in vivo, the basis of which is not clearly understood. To characterize mechanisms involved with potential anti-inflammatory actions of retinoids, we studied the effects of retinoic acid (RA) on cytokine production in human perip...
متن کاملP-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction
Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 91 8 شماره
صفحات -
تاریخ انتشار 1998